For each of the practice examples, show how you would set up the bounds for a double integral over the given region in both ways: bottom/top and left/right.

$$
\iint_{D} f(x, y) d A=\int_{a}^{b}\left(\int_{\text {BOTTOM }(x)}^{\operatorname{TOP}(x)} f(x, y) d y\right) d x=\int_{c}^{d}\left(\int_{\operatorname{LEFT}(y)}^{\operatorname{RIGHT}(y)} f(x, y) d x\right) d y
$$

Example 1: Consider the region bounded by the curves $y=\sqrt{x}, x=0, y=3$.

Top/Bottom Answer:

For any fixed x chosen from $0 \leq x \leq 9$, we see $\sqrt{x} \leq y \leq 3$.
Left/Right Answer:
For any fixed y chosen from $0 \leq y \leq 3$, we see $0 \leq x \leq y^{2}$.

$$
\int_{0}^{9}\left(\int_{\sqrt{x}}^{3} f(x, y) d y\right) d x \quad O R \quad \int_{0}^{3}\left(\int_{0}^{y^{2}} f(x, y) d x\right) d y
$$

Example 2: Consider the region bounded by the curves $y=\sqrt{x}, x=9, y=0$.

Top/Bottom Answer:

For any fixed x chosen from $0 \leq x \leq 9$, we see $0 \leq y \leq \sqrt{x}$.
Left/Right Answer:
For any fixed y chosen from $0 \leq y \leq 3$, we see $y^{2} \leq x \leq 9$.

$$
\int_{0}^{9}\left(\int_{0}^{\sqrt{x}} f(x, y) d y\right) d x \quad \text { OR } \quad \int_{0}^{3}\left(\int_{y^{2}}^{9} f(x, y) d x\right) d y
$$

Example 3: Consider the region bounded by the curves $y=x^{2}, y=2 x+3$.
Note that the graphs intersect at $(-1,1)$ and $(3,9)$.

Top/Bottom Answer:

For any fixed x chosen from $-1 \leq x \leq 3$, we see $x^{2} \leq y \leq 2 x+3$.

Left/Right Answer: Note that this is a poor choice since the equation on the left changes at $y=1$. To do this, we would have to break up the problem into two regions as follows:
For any fixed y chosen from $0 \leq y \leq 1$, we see $-\sqrt{y} \leq x \leq \sqrt{y}$.

For any fixed y chosen from $1 \leq y \leq 9$, we see $\frac{y-3}{2} \leq x \leq \sqrt{y}$.

$$
\int_{-1}^{3}\left(\int_{x^{2}}^{2 x+3} f(x, y) d y\right) d x \quad \text { OR } \quad \int_{0}^{1}\left(\int_{-\sqrt{y}}^{\sqrt{y}} f(x, y) d x\right) d y+\int_{1}^{9}\left(\int_{(y-3) / 2}^{\sqrt{y}} f(x, y) d x\right) d y
$$

Example 4: Consider the region bounded by the curves $y=x^{3}, y=4 x$.

Top/Bottom Answer:

For any fixed x chosen from $0 \leq x \leq 2$, we see $x^{3} \leq y \leq 4 x$. Left/Right Answer:

For any fixed y chosen from $0 \leq y \leq 8$, we see $y / 4 \leq x \leq y^{\frac{1}{3}}$.

$$
\int_{0}^{2}\left(\int_{x^{3}}^{4 x} f(x, y) d y\right) d x \quad O R \quad \int_{0}^{8}\left(\int_{y / 4}^{y^{\frac{1}{3}}} f(x, y) d x\right) d y
$$

For the next two examples, draw the region that goes with the given double integral, then reverse the order of integration.

Example 5: $\int_{0}^{3}\left(\int_{x^{2}}^{3 x} f(x, y) d y\right) d x$

Answer: We are given a TOP/BOTTOM description!!!
Start by drawing $y=x^{2}$ (will be the BOTTOM or lower bound!) and $y=3 x$ (will be the TOP or upper bound!)

Now reverse the order
For $0 \leq y \leq 9$, we see $\frac{y}{3} \leq x \leq \sqrt{y}$. Thus,
$\int_{0}^{3}\left(\int_{x^{2}}^{3 x} f(x, y) d y\right) d x=\int_{0}^{9}\left(\int_{y / 3}^{\sqrt{y}} f(x, y) d y\right) d x$

Example 6: $\int_{0}^{4}\left(\int_{6}^{2 y+6} f(x, y) d x\right) d y$

Answer: We are given a LEFT/RIGHT description!!!
Start by drawing $x=6$ (will be the LEFT or lower bound!)
and $x=2 y+6$ (will be the RIGHT or upper bound!)
Now reverse the order
For $6 \leq y \leq 14$, we see $\frac{x-6}{2} \leq y \leq 4$. Thus,
$\int_{0}^{4}\left(\int_{6}^{2 y+6} f(x, y) d x\right) d y=\int_{6}^{14}\left(\int_{(x-6) / 2}^{4} f(x, y) d y\right) d x$

